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Abstract. This paper is concerned with the numbers of lattice animals with exactly c 
cycles. For weakly embeddable (bond) clusters we show rigorously that the growth constant 
is independent of c and we derive upper and lower bounds on the critical exponents for 
each value of c. We use series analysis methods to estimate the critical exponents for 
c = 1 and 2 in two and three dimensions and find that the critical exponent does depend 
on the number of cycles. Evidence from series analysis results and from expansions in 
inverse powers of the dimension suggests that, in the case of strong embeddings (i.e. 
site clusters) the growth constant is independent of c and the corresponding values of the 
critical exponents are identical to the values for weak embeddings (i.e. bond clusters). 
We discuss the relationship of these results to the field theory prediction that the critical 
exponent is independent of cycle fugacity. 

1. Introduction 

Branched polymer molecules with excluded volume have been modelled as lattice 
animals (i.e. connected clusters embeddable in a regular lattice) and a number of 
workers have discussed the importance of cycles on their properties (Lubensky and 
Isaacson 1979, Family 1980, Daoud and Joanny 1981). These authors have argued 
that the universality class is independent of cycle fugacity. Direct series evidence that 
trees and animals are in the same universality class has been presented for a number 
of lattices in two and three dimensions (Duarte and Ruskin 1981) and for d- 
dimensional hypercubic lattices for d = 2,3,  . . . , d, where d ,  (=8) is the upper critical 
dimension (Gaunt et a1 1982). The above series evidence was based on estimates of 
the exponent (e,) characterising the number of trees. In addition there is some Monte 
Carlo work (Seitz and Klein 1981) estimating the value of the exponent ( v )  characteris- 
ing the radius of gyration of trees. Their estimates, in both two and three dimensions, 
are close to the expected values for animals (Parisi and Sourlas 198i).  

In order to investigate the crossover from trees to animals we consider the numbers 
of clusters with n sites and precisely c cycles. The interesting result which we obtain 
is that the growth parameter is independent of  c but the associated critical exponent 
varies as c varies. 

To be more specific, we define unc (Anc) as the number, per lattice site, of weakly 
(strongly) embeddable clusters (i.e. bond and site clusters, respectively) with n sites 
and cyclomatic index c. We shall refer to clusters with cyclomatic index c as c- animals. 

@ 1983 The Institute of Physics 1695 
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In § 2 we show that the growth parameter 

A, = lim n log an, (1.1) 

exists for all finite c, for the d-dimensional hypercubic lattice. In addition we show that 

n -m 

A, = A 0  V C  (1.2) 

where A. is the growth parameter for the number of trees aflo (st,, in the notation 
of Gaunt et al (1982)). 

In 0 3 we enumerate the weakly and strongly embeddable clusters with fixed c for 
the triangular, square and simple cubic lattices. Assuming the expected asymptotic 
form 

a,, - n-ecA: (1.3) 

we estimate 8, and find strong evidence that 
precisely one cycle are not in the same universality class. 

analogous relations to (1.1) and (1.2) but, assuming that 

# eo. Hence trees and animals with 

In the case of strongly embeddable clusters we have been unable to prove the 

A,, - A:, (1.4) 

we find numerical evidence that 01 # eo but that 01 = el. (Gaunt et a1 (1982), who 
used the notation AnO = T,, have shown that Bo = Bo = 8 = 0, where 8 and 0 are the 
exponents for weak and strong embeddings of animals. According to Parisi and Sourlas 
(1981), 8 = 1 (d = 2) and 8 = 14 (d = 3).) 

In 0 4 we derive series expansions for the numbers of clusters with precisely c 
cycles and n sites, which are weakly and strongly embeddable in a d-dimensional 
simple hypercubic lattice, for arbitrary integral d. These series extend through eight 
sites for c = 1 and though seven sites for c = 2. We use these series to derive expansions 
in inverse powers of (r(=2d - 1) for A 1  and hZ and for AI and Az. Comparison of 
these expansions with the corresponding expansions (Gaunt et a1 1982) for A 0  and 
A. shows them to be consistent with A, = A. (proved rigorously in § 2) and A, = A. 
(conjectured on the basis of series analysis results in 3 3) for all c. 

In § 5 we make contact with the field theoretic treatment of branched polymers 
which involves a cycle fugacity. We show that our results are consistent with the field 
theory prediction that the universality class is independent of cycle fugacity. 

Our results are summarised and discussed in 9 6. 

2. Growth parameters for weakly embeddable c- animals 

We consider the set (WflC) of connected clusters of n sites with cyclomatic index c, 
weakly embeddable in a d-dimensional hypercubic lattice. If the number of such 
clusters, per site of the lattice, is a,=, we shall show that 

lim n-' log uflC =log A, (2.1) 
n-m 

exists, and is independent of c. 
The vertices of the d-dimensional hypercubic lattice are the integer points in a 

d-dimensional Euclidean space. We shall write the coordinates of a lattice vertex as 
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(xl, x 2 ,  x 3  . , , x d ) .  The edges of the lattice join pairs of vertices which differ by unity 
in precisely one coordinate. 

We shall need two definitions. For any set So of vertices we define the top vertex 
as follows. First construct the subset SI c So such that the coordinate x1 of every 
vertex in S1 has the maximum value over all coordinates in So. We then recursively 
construct s k  c S k - 1  such that the coordinate x k  of every vertex in Sk has the maximum 
value over all vertices in S k - 1 .  Let i be the smallest integer such that Si contains 
precisely one vertex, and call this vertex t ,  the top vertex of SO.  

For any graph r (not necessarily connected) with vertex set V(r) and non-empty 
edge set E ( r )  we can define a top edge, as follows. First construct the subset S c s  V(r) 
whose members are all the non-isolated vertices of r (i.e. all vertices in V(r) on which 
at least one edge in E(T) is incident). The top vertex (t,) of S ,  is called the top 
connected vertex of r (see for example figure 1). Next, construct the set N(t,) whose 
members are those vertices in V(r) which are directly connected to t, by an edge in 
E(r ) .  Let t, be the top vertex of N(t,). Then the edge joining t ,  and t ,  is the top 
edge of r. 

Figure 1. Construction of a tree from different graphs with one cycle. (The top connected 
vertex of one of these graphs is labelled tc.) 

We now make use of these definitions to prove an upper bound on anc for c 3 1. 
Consider any c-animal, w E W,, (c 3 1). Let the vertex and edge sets of w be V ( w )  
and E(w), respectively. Suppose that E'(w)GE(w) such that edges in E'(w) are 
not cut edges of w. (That is, an edge in E ( w )  is a member of E'(w) if and only if 
the removal of this edge from w does not decompose w into two or more connected 
components.) E'(w) is necessarily non-void since w has at least one cycle. We now 
consider the subgraph W' of w with edge set E(w') = E i ( w )  and vertex set V(w') = 
V(w). Let e be the top edge of w'. Now consider the graph w' which is obtained 
by eliminating e from w .  Since e was not a cut edge of w, w' is connected. Moreover, 
w and w' have the same vertices. Hence, using Euler's relation, the cyclomatic index 
of w' is c - 1 so that W'E W,,-l. 

Not all members of Wn,c-l can be obtained from members of W,, by this construc- 
tion. (In particular, no member of Wn,c-l which is a section graph (Essam and Fisher 
1970) of the lattice can be constructed in this way.) However, some members of 
W,,c-l can be constructed in this way from diferent members of Wnc. To be specific, 
two c- animals w 1, w z  E W,,, with identical vertex sets but whose edge sets differ by 
a single edge, will yield the same member w '  E W,,c-l if and only if the differing edges 
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are the top edges of the subgraphs w :  and w t ,  defined above (see figure 1 for an 
example when d = 2 ) .  An upper bound on the number of precursors in W,,, of any 
W ’ E  Wn,c-l can be obtained by considering the number of ways in which an edge can 
be added to w’ .  If we consider the set of graphs obtained from w’  by adding an edge 
in each way at each vertex these 2dn graphs will include all of the precursors of w ’  
in W,,,. Hence 

an, s 2dna,,,-l,  c a l .  (2 .2 )  
Now consider any c-animal w E W,,, and let the top vertex ( t )  of w have coordinates 

(xl, x2 , .  . . , x d ) .  We construct a graph w ’  by taking w and adding the three vertices 
u l ,  u2,  u3 with coordinates (xl+ 1, x2, x 3 , .  . . , xd), (xl, x 2 +  1, x 3 , .  . . , x d )  and (xl + 
1, x2 + 1, x3, . . . , x d ) ,  respectively, and the four edges ( t ,  VI), (t ,  UZ), (VI, u3), (u2,  u 3 ) .  
From the definition of top vertex, vl, u2 and u3  are not members of the vertex set of 
w ,  so that w ’  has n + 3  vertices. Since w is connected, the four added edges ensure 
that w ’  is connected and, because four edges and three vertices have been added, the 
cyclomatic index of w ‘  is c + l .  Hence W ‘ E  w n + 3 , c + l .  The construction defines an 
injection from W,,, to Wn+3,,+1 (since w ’  is uniquely determined by w and not all 
members of w n + 3 , c + l  can be obtained in this way) so that 

anc ~ a n + 3 . c + ~ .  

Replacing c by c + 1 in (2 .2 )  and n by n - 3  in (2 .3 )  gives 

(2 .3 )  

a,,-3., s an.c+i 2dna,,,. ( 2 .4 )  

Taking logarithms, dividing by n, and letting n go to infinity shows that if 
exists and is 

equal to log A,. Klein (1981) has shown that 

( 2 . 5 )  

-1  n log a,, exists and is equal to log A, then limn-tm n-l log 

n-m lim n-l log aflo=log A O  

exists, so it then follows by induction that 

n-cc lim n- l  log a,,, = log (2 .6)  

for any c 2 0. 

that 
If we now make the usual assumption about the subdominant asymptotic behaviour 

a,,, - n - e c ~  

(2.21, (2 .3 )  and (2 .7 )  imply that 
(2 .7 )  

3. Series derivation and analysis 

We have derived exact values of anc and A,, for the triangular, square and simple 
cubic lattices. The data for c = 1 and 2 are given in tables 1-3. Some data for c = 0 
have been given by Duarte and Ruskin (1981) and Gaunt et ai (1982). We have 
derived additional terms for c = 0, as follows: for the triangular lattice alo,o and all.o, 
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and for the square lattice ~ 1 3 , 0 ,  ~ 1 4 . 0  and a15,o. These data, together with the earlier 
coefficients, are also given in tables 1-3. 

We have analysed the above data using standard series analysis methods (Gaunt 
and Guttmann 1974). For one-animals weakly embeddable in the square lattice we 
have plotted against n-l in figure 2 the ratios r,  = a,,l/an-l,l, the linear extrapolants 
r ;  = nr, - (n - l ) r n - l  and their average r i  = $(r ,  + r ; ) ,  all of which should approach A I  
as n +CO. The arrow indicates the estimated value of A. (Gaunt er a1 1982) and the 
data are in good agreement with the result of § 2 that A. =A1. The corresponding 
evidence for the triangular and simple cubic lattices is equally satisfactory. 

The exponent O1 can be estimated from the sequence of biased estimates 

Table 1. Values of anc and A,, for the triangular lattice. 

(3.1) 

1 1 1 
2 3 3 
3 15 2 9 2 
4 89 27 3 29 12 
5 576 282 63 99 60 
6 3 930 2 690 903 348 28 1 
7 27 782 24 582 11 016 1260 1248 
8 201 414 219 222 122 754 4 644 5 472 
9 1488 048 1925 712 1292 286 17 382 23 662 

10 11 156 061 16 748 178 65 822 101 679 
11 84622074 251 655 434 784 
12 969 819 1852 892 
13 3 762 517 7 876 554 
14 14 680 890 

3 
21 

129 
732 

3 795 
19 014 
92 205 

438 264 
2 050 899 
9 484 524 

Table 2. Values of anc and A,, for the square lattice. 

n a*0 an 1 an2 A n 0  A" 1 A"2 

1 1 1 
2 2 2 
3 6 6 
4 22 1 18 1 
5 87 8 55 8 
6 364 54 2 174 40 2' 
7 1574 324 22 570 168 22 
8 6 986 1863 194 1908 677 134 
9 31 581 10 372 1446 6 473 2 708 656 

10 144 880 56 692 9 928 22 202 10 724 3 008 
11 672 390 305 796 64 392 76 886 42 012 13 456 
12 3 150 362 1 634 304 401 810 268 352 163 494 58 742 
13 14 877 317 8 674 612 2 436 762 942 651 633 748 250 986 
14 70 726 936 45 806 002 3 329 608 2 448 760 1056 608 
15 338 158 676 11 817 582 9 436 252 4 401 192 
16 42 120 340 36 285 432 18 173 796 
17 150 682 450 
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Table 3. Values of anc and A,, for the simple cubic lattice. 

~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

~ ~~~ ~ ~ 

1 
3 

15 
95 3 

678 48 
5 229 622 

42 464 7 308 
357 987 81 981 

3 104 013 895 536 
9 627 966 27 51 1 300 

248 160 162 

1 
3 

15 
83 3 

486 48 
18 2 967 496 18 

450 18 748 4 368 378 
7 958 121 725 36 027 4 854 

119 520 807 381 288 732 51 030 
1 640 634 5 447 203 2 280 792 488 976 

37 264 974 17 866 896 4 463 316 

Figure 2. Ratio estimates of AI for weak embeddings of one-animals on the square lattice. 
The arrow indicates the estimated value of A o .  

where io is an estimate of ho. (For the square and simple cubic lattices we adopt our 
previous estimates (5.14*0.01 and 10.50*0.07) biased using eo = 1 and Bo= 12, 
respectively, while for the triangular lattice we obtain the biased estimate h o  = 8.41 * 
0.02.) 

1 

We also form linear extrapolants 

e’, (n) = n e l ( n )  - (n - l ) e l ( n  - 1) 

er(n) = l [ e , ( n ) + e ;  (41 (3.3) 

(3.2) 
and the averages 
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and plot e l ( n ) ,  e', ( n )  and e ; ' ( n )  against n-l in figures 3 and 4. The expected values 
of ( = e )  are indicated by an arrow. Our estimate of 81 is 

el = -0.1 * 0.2, d =2 ,  

= +0.3 0.4, d = 3, 

so that is clearly not equal to Bo. 

l e l 

-lo[ 

0 15 0.10 0 05 0 
1 i n  

Figure 3. Biased ratio estimates of 0, for weak 
embeddings of one-animals on the square (U) and 
triangular (A)  lattices. The error bars reflect the 
uncertainties induced by the uncertainties in A,. The 
expected values of 0, and (0,- 1) are indicated by 
arrows. 

It follows from (2.10) that 

oo - 1 s el s eo 

-1 0 I/ 
1- I I I J 

0.15 0.10 0.05 0 
1 in 

Figure 4. Biased ratio estimates of O1 for weak 
embeddings of one-animals on the simple cubic lat- 
tice. The error bars reflect the uncertainties induced 
by the uncertainties in A,. The expected values of 
6, and (0, - 1) are indicated by arrows. 

and, accepting eo = 8 = 1 ford = 2 (Gaunt et a! 1982, Parisi and Sourlas 1981), we have 

o s e l s i  (3.7) 
for d = 2. The results (3.4) and (3.7) strongly suggest that may in fact be exactly 
equal to zero for d = 2. Further evidence that the lower bound in (3.6) may in fact 
be an equality is provided by the simple cubic lattice for which (3.6) gives 

(3.8) 

assuming eo = 8 = If for d = 3 (Gaunt et a1 1982, Parisi and Sourlas 1981). The results 
(3.5) and (3.8) are consistent with 81 being exactly equal to f. Accordingly we make 

1 i s  el G is, 
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-5 

the conjecture that 

e l = e o - i  V d .  

L 

- 

I 1 -10. I I 

- A/ - 

(3.9) 

We have also confirmed with reasonable numerical precision that, for two-animals 
weakly embeddable in the same three lattices, A 2  = A. as proved in § 2. For the 
exponent d2, numerical techniques identical to. those used above give the results 
plotted in figures 5 and 6, while from (2.8) it follows that for arbitrary d 

(3.10) eo-2 6 e2 6 eo. 

I I I I 

5 
I 

1 l n  1 in 

Figure 5. Biased ratio estimates of & for weak 
embeddings of two-animals on the square (0) and 
triangular (A) lattices. The uncertainties induced by 
the uncertainties in A. are not visible on this scale. 
The expected value of (Bo-?.) is indicated by an 
arrow. 

Figure 6. Biased ratio estimates of e2 for weak 
embeddings of two-animals on the simple cubic lat- 
tice. The uncertainties induced by the uncertainties 
in A. are the size of the points (0). The expected 
value of (8,-2) is indicated by an arrow. 

In two dimensions, we obtain the estimate 

e2 = -1 * 1, d = 2 ,  (3.11) 

from figure 5 and the bounds 

-1 s e2 s 1 (3.12) 

from (3.10) assuming eo = 8 = 1 as before. In view of our results for one-animals, 
these results again suggest that the lower bound in (3.10) might be an equality giving 
the conjecture 

e2 = eo- 2 Vd.  (3.13) 
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In three dimensions this gives e2 = -$ (assuming 8, = 8 = 13) which is consistent with 
the results in figure 6 for the simple cubic lattice. 

We have analysed the corresponding data for strongly embeddable clusters in 
exactly the same way. Although we have been unable to prove rigorously the analogue 
of (1.2), namely 

Ac =A0 vc, (3.14) 

this relation is supported by (or, at worst, is not inconsistent with) the numerical 
results for both one- and two-clusters given in figures 7, 8 and 9 for the triangular, 
square and simple cubic lattices, respectively. The arrows indicate the estimated values 
of A,. (For the square and simple cubic lattices we adopt the values given by Gaunt 
et al (1982), while for the triangular lattice we have obtained the biased estimate 
A0=4.196*0.007.) The conjecture (3.14) is also consistent with the results of 1/u 
expansions obtained in 0 4. 

Results for the exponent O1 are shown in figures 10 and 11 and for O2 in figures 
12 and 13. The hypothesis of universal critical exponents for both weak and strong 
embeddings suggests that the existing conjectures (Gaunt et a1 1982, Gaunt 1980) 

should be supplemented by 

o1 =e1, o2 = e2. (3.16) 

Thus, we expect from (3.9), (3.13) and (3.15), using 8 = 1 (d = 2) and 8 = If (d = 3) 

0 2  0 1  
1 In 

0 

Figure 7. Ratio estimates of A, for strong embeddings of one-animals (+) and two-animals 
(0) on the triangular lattice. The arrow indicates the estimated value of A,,. 
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I I I 
0.15 0 10 0 05 0 

l l n  

Figure 8. Ratio estimates of Ac for strong embeddings of one-animals (+) and two-animals 
(0) on the square lattice. The arrow indicates the estimated value of Ao. 

I l n  

Figure 9. Ratio estimates of Ac for strong embeddings of one-animals (+) and two-animals 
(0) on the simple cubic lattice. The arrow indicates the estimated value of Ao. 

(Parisi and Sourlas 1981), that 

0 -1. 1 - 2 (d = 3), 

02 = -$ (d  = 3).  

01 = 0 (d = 2), 

0 2 = - 1 ( d = 2 ) ,  (3.17) 

These predictions are well supported by the numerical evidence. For one-clusters we 
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l l n  

Figure 10. Biased ratio estimates of 01 for strong embeddings of one-animals on the 
square (U) and triangular (A) lattices. The error bars reflect the uncertainties induced by 
the uncertainties in Ao. The expected value of (Bo- 1) is indicated by en arrow, 

t 

, 

Figure 11. Biased ratio estimates of O1 for strong 
embeddings of one-animals on the simple cubic lat- 
tice. The error bars reflect the uncertainties induced 
by the uncertainties in .do. The expected value of 
(eo- 1) is indicated by an arrow. 

Figure 12. Biased ratio estimates of O2 for strong 
embeddings of two-animals on the square (U) and 
triangular (A) lattices. The error bars reflect the 
uncertainties induced by the uncertainties in Ao. 
The expected value of ( 0 0 - 2 )  is indicated by an 
arrow. 
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201 I I I 

-1 0 1 
I I 

0.1s 0.10 0.0 5 0 
1 I n  

Figure 13. Biased ratio estimates of O2 for strong embeddings of two-animals on the 
simple cubic lattice. The uncertainties induced by the uncertainties in A. are not visible 
on this scale. The expected value of (00 -2 )  is indicated by an arrow. 

estimate 
01 = -0.075 * 0.1, 

= 0.4 i 0.3, 

d =2 ,  

d =3 ,  

from figures 10 and 11, respectively, and for two-clusters 

0 2 =  -1.Ok0.25, d =2,  

(3.18) 

(3.19) 

(3.20) 

from figure 12. The results for the simple cubic lattice shown in figure 13 are consistent 
with a value of O2 = -t as given in (3.17). 

4. Expansions for hypercubical lattices 

First we derive expressions for the numbers of clusters with precisely c (= 1,2)  cycles 
and m bonds, both weakly and strongly embeddable in a simple hypercubic lattice in 
d dimensions. These are obtained from the bond perimeter polynomials (see e.g. 
Sykes et a1 1981) given by Gaunt and Ruskin (1978) in equation (2.1). To extract 
this information we note that the coefficient of q2(m+1)d-2m-2cd in the perimeter 
polynomial D, is the number of strongly embeddable clusters with m bonds, c cycles 
and hence n = m + 1 - c  sites. Thus, 

AS1 = 8 (i) +24 (:), 
A 7 ~ = 1 6 8 ( ~ ) + 3 8 6 4 ( ~ ) + 1 5 8 4 0 ( ~ ) + 1 5 6 8 0 ( ~ ) ,  

A e l = 6 7 7  ( ~ ) + 3 3 9 9 6 ( 3 + 2 8 2 2 1 6 ( : ) + 6 8 8 6 4 0 ( ~ ) + 4 9 1 5 2 0 ( ~ ) ,  

A61 =40 (:) +376 (:) +576 (:), 
(4.1) 
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and 

A12 = A22 = A32 = A42 =A52 = 0, A 62 = 2 (: ) + 12 (t ) 3 

(4.2) 
A72=22(:)+312 (:)+624 (:), 

2(m+l)d-2m-2cd-p where (t) are binomial coefficients. Furthermore, the coefficient of q , 
p = 1 , 2 , .  , . in Dm is the number of clusters with m bonds, c cycIes and precisely p 
neighbouring contacts, i.e. pairs of neighbouring sites not joined by a bond. Summing 
these contributions gives the total number of weakly embeddable clusters with c cycles 
and n = m + 1 - c  sites, namely 

a61 = 54 (i) +460 (t) +576 (:), 
a71 = 324 (:) + 6 336 (t) + 20 256 (:) + 15 680 (:) , 

asl = 1863 (i) +76 392 (i) +474 024 (:) +880640 (t) +491520 (i), 
and 

a72 =22 (i) +384 (i) +624 (t), 

(4.3) 

(4.4) 

For the special cases d = 2 and 3 we have extended each of these series as given in 
tables 2 and 3, respectively. 

We now use these results to derive expansions for Ac and A, for c = 1 and 2 in 
inverse powers of U = 2d - 1. The data in (4.1) may be written in the general form 

(4.5) 

For 6 = 2 and 3 we have been able to calculate AEl as functions of n, 

Anl(d) = 2n-3nn-5(n -2)(n -3) + 2”-’n n-7(n - 3)(n - 4) 
( n  “1 

x(2n3-9n2+5n+50) (n  ”) +. * * (n 3 3). (4.6) 

This result may be obtained by first observing that strongly embeddable clusters with 
n sites and three or more cycles cannot ‘stretch’ into (n -3) dimensions or higher. 
Hence, the coefficients of the (,do ([ = 1,2,3) in N,, the total number of strongly 
embeddable clusters with n sites, contain only contributions from A,o, A,I and An2. 
The expansion of N, is given by Gaunt et a f  (1976) in equation (2.4), and subtracting 
the expansions of AnO and An2 given by Gaunt et a1 (1982, equation (4.6)) and (4.9) 
below, respectively, gives (4.6). The leading term in (4.6) is in fact identical to the 
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second contribution to ab, given in equation (2.4) of Gaunt and Ruskin (1978), who 
also explain its origin in graph-theoretic terms. 

Following the approach outlined by Gaunt et a1 (1976), we expand the binomial 
coefficients in (4.6) in inverse powers of U, giving 

Hence, 

In Al(d) = lim n-l 1nAnl(d)  =In U + 1 -2tu-l +O(U-’), (4.8) 
n-m 

which is term-by-term identical with the analogous expansion for In A0 (Gaunt et a1 
1982, equation (4.7)), at least to this order. This is consistent with A1 =A,  as 
conjectured in (3.14). 

For the case c = 2, we have only managed to calculate the leading coefficient A’,z 
in the analogue of (4.5), namely 

(n 3 3). (4.9) 

This coefficient is easily checked against the data in (4.2) but its derivation is rather 
difficult. In terms of the underlying graphs it contains contributions from the &graph 
(3,1,3)e decorated with (n -6) ‘tails’ and the ‘dumbbells’ (4,i,4)D with i = 
0, 1 ,2 ,  . . . , (n - 7), and decorated with (n - 7 - i )  ‘tails’. No other graphs can stretch 
into ( n  -3) dimensions. (For the graph terminology, see Sykes (1961) and Sykes er 
a1 (1966).) If we again expand the binomial coefficient in l / u  we obtain 

(4.10) 

which yields 

In h z ( d )  = lim n-l In A,z(d) = In U + 1 + O(u-’) . (4.11) 

This expansion too coincides, as far as it goes, with the corresponding expansion for 
In A. and is therefore consistent with hZ = ho as in (3.14). 

We have performed similar calculations for the weak embeddings but only to 
zeroth order for both the c = 1 and 2 cases. For clusters which stretch into the 
maximum possible number of dimensions, there is no difference between weak and 
strong embeddings. Thus, the coefficients of ( , d ~ )  in (4.3) and (4.1) are identical, as 
are the coefficients of (,,d3) in (4.4) and (4.2). Hence, from (4.6) and (4.9) we may write 

anl(d) = 2n-3nn-5(n -2)(n -3) ( ”) +. * . (n 321, (4.12) 

a,z(d) = 2n-6n n-7(n -3)(n -4)(n - 5)(n + 6) (,”)+- (4.13) 

respectively. These expressions for an1 and anz,  like the expression for An2, are of 

n +m 

(n 3 31, 
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the form 2"-Pn"-qP(n) (,!.,) where p, q and r are fixed integers and limn+a P(n) ' /"  = 1. 
For any such function, expanding the binomial coefficients and proceeding as before 
will yield an expression of the form (4.11). To calculate the coefficient of CY-' would 
require further terms in (4.9), (4.12) and (4.13), the calculation of which is highly 
non-trivial. 

5. Connection with field theory results 

Much of the work which has appeared on the importance of cycles in the modelling 
of branched polymer molecules by lattice animals has focused on the relationship 
between trees and animals with unrestricted cyclomatic index. The evidence suggests 
that these two classes of graphs have different growth constants but the same critical 
exponent (Duarte and Ruskin 1981, Gaunt et a1 1982). In addition, renormalisation 
group arguments (Lubensky and Isaacson 1979, Family 1980) suggest that varying 
the cycle fugacity does not change the universality class. 

In order to make contact with the field theoretic treatments, we present the 
following heuristic argument for weakly embeddable clusters (although analogous 
results appear to hold for strongly embeddable clusters). Consider the generating 
function 

G ( n , z ) =  1 anczC 
c a0 

(5.1) 

where z is the cycle fugacity. Let us write 

a,, = b,n - O C A  (5.2) 

where 6 ,  is the appropriate amplitude and use the exact result A, = A. (as implied by 
(2.6)) and the conjecture 6, = & - c  (which is the natural extension of the conjectures 
(3.9) and (3.13) and is discussed fully in 0 6, equation (6.2) et seq.). Thus we obtain 

Cm.x 

c = o  
G ( n ,  z )  = n-'OA; bcnCzC -n-eoA;fF(nz),  n +a, 

where 
m 

F ( w ) =  1 b,wc 
c =o 

(5.3) 

(5.4) 

is the generating function of the amplitudes. Since G ( n ,  1) = a,, the number of weakly 
embeddable animals with n sites, and limn+m a !,In exists (Klarner 1967), it follows that 

F ( w )  = exp[O(w)l, W +a. ( 5 . 5 )  

We find that l nF(w)  can be mimicked, over its whole range, by a [2/1] Pad6 
approximant (Gaunt and Guttmann 1974). From (5.3), it is clear that this form for 
lnF(w),  or indeed any [m + l / m ]  Pad6 approximant, is consistent with the growth 
constant being a function of z but with the exponent being independent of z and, in 
particular, with eo = 6. Additive logarithmic correction terms (4 In w )  to the Pad6 
approximant form proposed for In F ( w )  appear to be ruled out since they would imply 
6 = 6o - q5 rather than = eo. 
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6. Discussion 

In this paper we have considered the problem of animals with fixed cyclomatic index 
(c-animals). In § 2 we have shown rigorously that, for bond animals on the simple 
hypercubic lattice, the growth constant (A,) of c- animals is independent of the cyclo- 
matic index ( c ) ,  i.e. A, = A. for all c. Making the usual assumption that, asymptotically, 
the number (a",) of c-animals with n sites can be written 

we have shown that @,a @,+I L 0, - 1. In § 3 we have used series analysis methods to 
estimate A, and 8, for c = 1 , 2  and have found that the series evidence is consistent 
with 0, = 

For strong embeddings, the series analysis results suggest that the growth constants 
(A,) are independent of c, i.e. A, = A. for all c, though we have been unable to prove 
this conjecture. In 0 4 we have derived expansions of AI and A2 in inverse powers 
of U = 2d - 1, for d-dimensional hypercubic lattices, and these expansions are con- 
sistent with A. = AI = &. We have used series analysis techniques to estimate the 
corresponding exponents and 02 and we suggest that 0, = @,-I - 1. Together with 
the previous evidence that 80 = 00 (Duarte and Ruskin 1981, Gaunt er a1 1982), this 
would imply that 

0, =e, = eo-c (6.2) 
for all c. Of course, (6.2) is only a conjecture, based on series evidence for c = 0, 1,2.  
However, (2.8) implies the weaker result 

- 1 for c = 1,2.  We have suggested that this may be true for all c. 

e, a o - c .  (6.3) 

In § 5 we considered the relationship between our results (especially that 8, depends 
on c )  and the field theory arguments which suggest that the exponent is independent 
of cycle fugacity. We show that the particular expression which we propose for the 
c dependence of e,, and the functional form for the generating function of the 
amplitudes indicated by our numerical data, are consistent with the field theory 
prediction. 
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